[CONTRIBUTION FROM THE DEPARTMENT OF CHEMISTRY, PURDUE UNIVERSITY, AND THE CERAMIC LABORATORIES, DIVISION OF MINERAL TECHNOLOGY, UNIVERSITY OF CALIFORNIA]

Preparation, Identification and Chemical Properties of the Thorium Silicides^{1a}

BY E. L. JACOBSON, ROBERT D. FREEMAN, A. G. THARP AND ALAN W. SEARCY^{1b}

RECEIVED APRIL 2, 1956

An X-ray diffraction investigation of the thorium-silicon system establishes the existence of " β -ThSi₂," ThSi and Th₃Si₂ in addition to α -ThSi₂ which has been previously reported. " β -ThSi₂" is hexagonal, space group D¹_{5h} - P6/mmm, with $a_0 = 3.985 \pm 0.002$ Å. and $c_0 = 4.220 \pm 0.002$ A. The phase contains a higher ratio of thorium to silicon atoms than does α -ThSi₂ and apparently has a real composition of about ThSi_{1.5} ± 0.2 . ThSi is orthorhombic, space group D¹_{6h} - Pehmm, with $a_0 = 5.89$ Å., $b_0 = 7.88$ Å., and $c_0 = 4.15$ Å. Th₂Si₂ is primitive tetragonal, space group D⁵_{4h} - P4/mbm, with $a_0 = 7.835 \pm 0.003$ and $c_0 = 4.154 \pm 0.005$ Å. These phases are isomorphous with corresponding uranium silicides. Reactivities of the thorium silicides with twelve common chemical reagents are reported.

A study of thorium-silicon compounds was undertaken because, although thorium and uranium usually form similar compounds with metalloids, only one silicide of thorium, α -ThSi₂,² was known compared to six silicides of uranium.³ The known uranium silicides are USi₃,^{4,5} α -USi₂,^{4,6} β -USi₂,^{4,6} USi,^{4,6} U₃Si₂,^{4,6} and U₃Si,^{4,6} Another phase, γ -USi₂, has been reported,⁷ but the cell constants and reported structure are so nearly identical with those for USi₃ that the existence of γ -USi₂ is questionable.

Experimental

Mixtures of powdered thorium and silicon in the desired atomic ratios were heated in graphite, tungsten or aluminum oxide containers *in vacuo* to temperatures of 1000– 1700° for varying periods of time. Weights of samples varied from 0.5 to 4.0 g. Crucible reaction was not noted unless the Si:Th atomic ratio was greater than 3:1 or less than 0.33:1.

The thorium powder which was available at the commencement of our investigations contained considerable thorium dioxide. Samples with initial compositions in the range ThSi_{4.0} to ThSi_{1.22} (neglecting oxide content) when heated to 1400–1700° for about one hour showed only faint diffraction patterns of thorium dioxide. Lower temperatures or higher thorium contents always gave preparations containing considerable oxide contaminant. It is apparent that in high silicon content samples heated to high temperatures, oxygen was removed by reactions of the type (n + 2)-Si + ThO₂ = ThSi_n + 2SiO(g). To eliminate oxygen from high silicon content samples prepared at lower temperatures a few preparations were made using the aluminum solvent technique of Brauer and Mitius.² These preparations, after dissolution of the aluminum by hydrochloric acid, yielded thorium dioxide-free platelets of α -ThSi₂ which if heated to 1460° for one hour or more were converted to a phase isostructural with β -USi₂ and hence designated " β -ThSi₂." When thorium of lower oxide content became available, samples of all desired compositions were prepared successfully by direct synthesis from the elements.

Analysis of each preparation was made by standard X-

 (a) Work supported by the Office of Naval Research. Contains material from the M.S. thesis of E. L. Jacobson, Purdue University, June, 1952.
 (b) Author to whom inquiries should be addressed.

(2) G. Brauer and A. Mitius, Z. anorg. allgem. Chem., 249, 325 (1942).

(3) In a paper that came to our attention after structure assignments were completed, G. F. Hardy and J. K. Hulm, Ph_{YS} . Rev., **93**, 1004 (1954), it is stated Zachariasen has found a β -ThSi₂ phase and a Th₃Si₂ phase and has made the same space group assignments as we find for two of the phases reported here.

(4) P. Gordon, B. Cullity, M. Cohen, G. Bitsianes, A. R. Kaufmann and R. B. Bostian, quoted by J. J. Katz and E. Rabinowitch in "The Chemistry of Uranium," McGraw-Hill Book Co., Inc., New York, N. Y., 1951, pp. 226-228.

(5) B. R. T. Frost and J. T. Mackrey, J. Inst. Metals, 82, 177 (1953).

(6) W. H. Zachariasen, Acta Cryst., 2, 94 (1949).

(7) G. Brauer and H. Hoag, Z. anorg. allgem. Chem., 259, 197 (1949).

ray powder diffraction techniques. Diffraction patterns were obtained on 114.6 mm. cameras using nickel-filtered copper K α radiation. The samples were mounted on silica fibers.

The " β -ThSi₂" Phase.—When samples of α -ThSi₂ were heated above 1400° and cooled to room temperature a new phase was found. Diffraction data, which are given in Table I for the first 21 planes of this phase, correspond to a hexagonal unit cell with $a_0 = 3.985 \pm 0.002$ Å. and $c_0 =$ 4.220 ± 0.002 Å. Comparison of the spacings and intensities with those for β -USi₂ showed the phases to be isostructural and the new phase was accordingly named β -ThSi₂. Intensities for each reflection were calculated by using the relationship

$$I = (F^2) \frac{1 + \cos^2 2\theta}{\sin^2 \theta \cos \theta} p$$

with the symbols having their usual meaning. The space group is $D_{bh}^{1}P6/mmm$ with one thorium in (0,0,0) and two silicon in $\pm (1/_{3}, 2/_{3}, z)$ with $z = 1/_{2}$. The calculated X-ray density is 8.23 g. cm.⁻³.

TABLE	I
-------	---

CRYSTALLOGRAPHIC DATA FOR "&-ThSi2"

	CRISIALLOGA	AFIIC DAIA	FOR p-Ino	12
		in²θ		Iª
hkl	Obsd.	Caled.	Obsd.	Caled.
001	0.0334	0.0334	m	177
100	. 0499	. 0499	s	752
101	. 0835	.0833	vs	2480
002	. 1336	.1335	w +	346
110	.1492	. 1497	s-	744
102	. 1836	. 1834	_	257
111∫	. 1850	, 1833	S	77)
200	. 2000	. 1996	w +	112
201	. 2329	. 2330	s ⁻	481
112	.2834	.2832	s-	506
202	. 3323	. 3331	w +	20
103)	2200	.3502		246
210∫	. 3502	. 3493	s ⁻	90∫
$211^{'}$.3826	.3827	s -	430
300)	4404	. 4491	_	121)
113	. 4494	. 4500	m ⁻	28∫
212)	4000	. 4828	т	112
301	. 4826	.4825	$^{\rm m+}$	26∫
$203^{'}$. 4996	. 4999	m -	148
302)	5000	. 5826		188)
104	. 5836	. 5838	m	49)
A	om strong, a	strong: m	modium ; m	weal

^a vs, very strong; s, strong; m, medium; w, weak.

The X-ray structure determination and the formation of β -ThSi₂ by heating α -ThSi₂ suggested β -ThSi₂ to be a high temperature modification of ThSi₂. More thorough investigation, however, showed that α -ThSi₂ resulted from heating samples with Si:Th atom ratios 2:1 or higher at any temperature in the range 1000 to 1670°, while samples of lower silicon content heated in the same range yielded β -ThSi₂. A series of experiments was accordingly devised to prove whether or not the elemental compositions of the α and β phases are identical.

Samples of initial composition ThSi_{3.0} and ThSi_{2.0} were heated simultaneously at 1520°. After heating, the diffraction patterns were those of pure α -ThSi_{2.0} and of pure β -ThSi_{2.0}, respectively. These samples were crushed to fine powders, and enough silicon was added to the β -ThSi₂ to raise the silicon-thorium ratio to 3:1. Both samples were then reheated to 1670° for one hour and cooled to room temperature. Diffraction analysis showed that the α -ThSi₂ had been converted to β -ThSi₂, and that the β -ThSi₂ had reacted with the excess silicon to yield α -ThSi₂. A sample of β -ThSi₂ heated at 1000° for three days was not converted to

These results are consistent with the conclusion that β -ThSi₂ contains a lower concentration of silicon than does α -ThSi₂ and that α -ThSi₂ is converted to β -ThSi₂ at high temperatures by silicon vaporization, perhaps partly as SiO. Comparison of diffraction patterns with compositions, after allowance for ThO₂ impurity, fixes the composition of α -ThSi₂ at about the ideal composition for ThSi₂. The actual composition of the β -ThSi₂ phase appears to be ThSi_{1.5} = 0.2. Both β -USi₂⁴ and β -PuSi₂⁸ have been assigned compositions of MSi_{1.5} from composition studies, although Zachariasen⁶ discounted the uranium-silicon composition studies because of his structure results.

The ideal β -phase structure consists of close packed sheets of metal atoms placed directly over each other with an intermediate sheet of silicon atoms in each of the two holes per metal atom. A hexagonal close packed lattice of uniform spheres differs from this structure in that in packing of uniform spheres only half the holes between the top and bottom layers are filled. All positions in the intermediate layer can be filled without distortion only if the atoms of the intermediate layer are much smaller than those of the top and bottom layers. It is probable that silicon vacancies occur in the ideal β -MSi₂ lattices because of crowding. The silicon-silicon atoms in β -ThSi₂ are 0.10 Å. closer together than in α -ThSi₂.

The ThSi Phase.—Samples of composition near ThSi_{1.0} when heated to $1500-1700^{\circ}$ gave, in addition to β -ThSi₂, strong diffraction patterns of another phase. The phase was also obtained by prolonged heating of a sample of β -ThSi₂ in vacuo at 1450°.

This we want is a second seco

The Th₃Si₂ Phase.—Preparations with Si:Th atomic ratios of about 0.82 yield, in addition to ThSi, a diffraction pattern very similar to that for U₃Si₂. Calculated sin² θ values were fitted readily to a unit cell with tetragonal symmetry. The space group of U₃Si₂ is D⁵_{4h} — P4/mbm with two metal atoms in (0, 0, 0), (1/2, 1/2, 0), four metal atoms in $\pm (u, u + 1/2, 1/2)$, (1/2 — u, u, 1/2), and four silicon atoms in $\pm (v, v + 1/2, 0)$, (1/2 — v, v, 0). Intensities calculated for the thorium silicide using Zachariasen's values⁶ of u and v (u = 0.18, v = 0.39) for U₃Si₂ gave satisfactory agreement with observed intensities. The silicide, therefore, is Th₃Si₂, isostructural with U₅Si₂. The cell is primitive tetragonal with $a_0 = 7.835 \pm 0.003$ Å. and $c_0 = 4.154 \pm 0.005$ Å. and has a calculated density of 9.80 g. cm.⁻³. Table III gives

Discussion

Since phases identified as USi_3 and U_3Si have been found in the uranium-silicon system, corresponding phases were intensively sought in the thorium-silicon system. Preparations of higher

(8) O. J. C. Runnalls and R. R. Boucher, Acta Cryst., 8, 592 (1955).
(9) H. Schachner, H. Nowotny and H. Kudielka, Monatsh. Chem., 85, 1140 (1954).

TABLE II CRYSTALLOGRAPHIC DATA FOR ThSi

	CRISIALLO	GRAFHIC DAIA	TOK THOI	
		in²0		7ª
hk l	Obsd.	Caled.	Obsd.	Caled.b
110	0.0267	0.0267	w	38
020	.0383	.0382	m -	84
101	.0517	.0516	m	167
120	.0554	.0554	m	112
111	.0611	.0611	s	265
200	Absent	.0684		0
021	0.0727	.0727	s	174
210	.0779	.0780	s	214
121	.0898	.0898	m	111
130	.1032	.1032	m	102
220	Absent	. 1067	• •	0
211	0.1123	.1124	m	82
131)	1000	.1376		11)
002∫	. 1380	. 1378	m	63)
221	Absent	.1411		0
040	Absent	.1530		0
230	Absent	.1545	••	4
310	Absent	.1636	• •	5
112	0.1652	.1645	w -	8
140	. 1699	.1701	w	44
022	.1765	.1760	w	21
041	1000	.1874		59)
231∫	.1882	.1889	m+	107
4 w weak	m mediu	mi e etrong	b There a	ro Zoohorio

^a w, weak; m, medium; s, strong. ^b These are Zachariasen's values for the intensities of USi⁶ and are within the error of visual observation since the scattering factor of thorium differs little from that of uranium.

 $T_{ABLE} III$

CRYSTALLOGRAPHIC DATA FOR Th₃Si₂

sin ² 0				1a	
hkl	Obsd.	Caled.	Obsd.	Caled.	
100	Absent	0.0097		0.0	
110	0.0194	.0194	w	27.2	
001	.0343	.0344	w -	16.3	
200	Absent	.0387		3.0	
101	Absent	.0441	• •	0.0	
210	0.0485	.0484	m^+	117.8	
111	.0537	.0538	ın	55.9	
201	.0730	.0732	s +	259.2	
220	.0774	.0774	w +	74.9	
211	.0829	.0828	s	190.3	
300	Absent	.0871	• •	0.0	
310	0.0968	. 0968	m +	117.1	
221	Absent	.1119	• •	0.8	
301	Absent	. 1216		0.0	
320	0.1259	. 1258	w	8.5	
311	Absent	.1312		3.4	
002	0.1371	.1378	m-	51.5	
102	Absent	. 1474	• •	0.0	

^a w, weak; m, medium; s, strong; vs, very strong.

initial silicon content than $\text{ThSi}_{3.0}$ gave diffraction patterns of α -ThSi₂ and silicon, and those of lower silicon content than $\text{ThSi}_{0.5}$ gave patterns of Th₃-Si₂ and thorium as well as considerable amounts of ThO₂. Thorium silicides of formulas ThSi₃ and Th₃Si either do not exist or are of limited stability. Apparently plutonium also does not form an MSi₃ phase.⁸

Chemical Properties.—Finely powdered samples of the thorium silicides were tested with twelve common chemical reagents. Samples were allowed to stand for at least 12 hours in each reagent. Solutions and samples were then heated to the boiling point of the solutions for several minutes. In no instance was a reaction observed on heating if none had occurred with cold solutions.

All thorium silicides reacted with concentrated hydriodic acid, concentrated hydrochloric acid, concentrated hydrofluoric acid and aqua regia. None of the silicides reacted with 20% sodium hydroxide, 30% hydrogen peroxide, 0.1 N potassium permanganate or 5% nitric acid. Only Th₃Si₂ reacted appreciably with 36 N H₂SO₄ although both Th₃Si₂ and ThSi reacted with 6 N H₂SO₄. Only ThSi was even slightly attacked by concentrated nitric acid. All compounds except

Th₃Si₂ were attacked by 5% hydrochloric acid. All the thorium silicides were unstable on pro-

In the thoritain sincles were unstable on pholonged standing in air. They disintegrated slowly to form a fine black powder which was amorphous to X-rays. Samples of ThSi sometimes reacted with air rather rapidly. Melting points were not determined, but α -ThSi₂ and " β -ThSi₂" samples showed no sign of melting when heated to 1670° while samples of Th₃Si₂ were melted at 1700°. Samples of ThSi were never obtained free of " β -ThSi₂" or Th₃Si₂ and may be stable over only a limited temperature range.

LAFAYETTE, INDIANA Berkeley, California

[CONTRIBUTION FROM THE DEPARTMENT OF CHEMISTRY AND CHEMICAL ENGINEERING AND THE RADIATION LABORATORY, UNIVERSITY OF CALIFORNIA, BERKELEY]

The Formation of Unipositive Nickel by Electrolysis in Concentrated Salt Solutions^{1,2}

BY RUSSELL H. SANBORN AND E. F. ORLEMANN

RECEIVED MAY 4, 1956

The reduction of Ni(II) at the dropping mercury electrode leads to the formation of Ni(I) where the concentration of various salts, such as NaClO₄, LiClO₄, Ca(ClO₄)₂, NaCl and KCl, is made sufficiently high. In general, the formation of Ni(I) becomes clearly evident at salt concentrations of about one molar and becomes the principal process where the salt concentration is made two to three molar. Evidence for the formation of Ni(I) lies in a comparison of the observed diffusion currents with directly measured diffusion coefficients, the existence of an intermediate state of nickel that reacts with bromate, and the fact that the amount of metallic nickel produced per Faraday of electricity in the concentrated solutions is much less than that obtained in dilute salt solutions. Various experiments to characterize the plus one state of nickel are described and some possible explanations of the phenomenon are presented.

In the course of a study of the mechanism of reduction of the first transition group metals at the dropping mercury electrode, it has been found that nickel shows a marked difference in behavior from the other members of this group in concentrated salt solutions. This paper is concerned with a study of the reduction of Ni(II) in concentrated salt solutions and the evidence that Ni(I) is obtained as the primary product under certain conditions.

Experimental

A Sargent Model XII Polarograph was used to record the current-voltage curves. The electrolysis cell was of the H-type, with a sintered glass disk and an agar plug separating the two arms. Oxygen was swept out of the solutions with purified nitrogen. All measurements were made at $25 \pm 0.03^{\circ}$.

All reagents were reagent grade chemicals except $LiClO_4$ and $Ca(ClO_4)_2$, which were crystallized out of solution prepared by the action of perchloric acid on the corresponding carbonates.

Results

Current-Voltage Curves of Nickel in Concentrated Solutions of Various Salts.—Current-voltage curves of Ni(II) in NaCl solutions from 0.1 to $3.0 \ M$ containing $10^{-3} \ M$ HCl are shown in Fig. 1. Curve 1 in Fig. 1 shows a single continuous c.v. curve corresponding to the reduction of Ni(II) to the metal. Curve 2 obtained in 1 M NaCl shows a distinct change in slope which suggests either a stepwise reduction of Ni(II) or possibly the reduc-

(1) This paper comprises a portion of the Ph.D. Thesis of Russell H. Sanborn, University of California at Berkeley, December, 1955. The research was supported in part by AEC Contract W-7405-eng-48 at the Radiation Laboratory, Berkeley, California.

(2) Presented before the Physical and Inorganic Division of the 128th National ACS Meeting, Minneapolis, Minn., September, 1955.

tion of two Ni(II) species, that have different activation energies of reduction, which are not maintained in equilibrium. Curves 3 and 4 show the effect of increasing the NaCl concentration to 2 and 3 M, respectively. The change in slope becomes more marked as the salt concentration is increased and the height of the first section of the c.v curve decreases. The limiting current of the first section will be referred to as i_1 . It is measured approximately by the intersection of the extrapolated slopes of the initial and second "linear" sections of the c.v. curves. Values of i_1 so obtained are quite uncertain where a curve such as 2 is analyzed and become reasonably precise for curves such as 3 and 4.

In the light of data presented subsequently in this paper the curves in Fig. 1 are to be interpreted as follows. The reduction of Ni(II) is a two-step process. In 0.1 M NaCl the Ni(I)initially produced disproportionates rapidly or is immediately further reduced to metal at the electrode and the total diffusion current corresponds to complete reduction to the metal. In 1 M NaCl, curve 2, the activation energy for electrode reduction of Ni(I) has increased so that the stepwise nature of the reduction becomes observable. Where the NaCl is made 3 M this kinetic "stabilization" of Ni(I) has become almost complete and the limiting current i_1 is due almost entirely to reduction to Ni(I) with only a very small contribution by further reduction to the metal. It should be noted that the Ni(I), which is about 10^{-3} M, need only have a half-life greater than a few milliseconds to account for curves 3 and 4.